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Abstract. In this paper we first characterize the Lie algebra of derivations of the three-
dimensional Manin quantum space as the semi-direct product of the Lie algebra of its inner
derivations and the threefold generalized Virasoro algebra with central charge zero. Then we
consider Hamiltonian systems on the quantum plane and we prove that the set of Hamiltonian
derivations is a Virasoro algebra with central charge zero. Moreover, we show that the only
possible motions on the quantum plane come from quadratic Hamiltonians and we find the
solutions of the corresponding Hamilton equations explicitly.

0. Introduction

Classical and quantum mechanicsgedeformed spaces have been studied by some authors.
Most of these works are concerned with Hamiltonian systems [1-3], but there are also some
works concerning the Lagrangian formalism on the quantum plane [2, 3]. To construct the
classical mechanics on the quantum plane one can usgdeformed symplectic structure
obtained by the-deformation of the natural symplectic structure of the plane and obtain the
equations of motion in the formxgdr = {H, x},, dp/dt = {H, p}, [1,2]. Unfortunately,

the g-deformed Poisson bracket has nothing in common with the usual Poisson bracket,
unless it is bilinear, and its only use is in writing the equations of motion as above.
However, most of the very interesting facts of classical mechanics are absent here. It
is unfortunate that, in general, it is not true th&i, H}, = 0, and{H, f}, = 0 does not

imply {H?, f}, = 0.

It is well known that there are two approaches to classical mechanics based on the
symplectic structure of the phase space [4,5]. The first is the state approach and the second
is the observable approach. In these approaches the coordinate and the momentum functions
appear like other observables and they all satisfy the same equation. A new interpretation
of the quantum spaces is given in [6]. According to this interpretation the two approaches
to classical mechanics are also suitable for the case of quantum spaces. To be more precise,
let M,—for the notation and conventions see the following pages—denotd #igebra
of Q-meromorphic functions and let be the canonica-deformed Poisson structure on
M,. By a Hamiltonian system we mean a tripl81(, , z), wherez is a-Hamiltonian
element ofM,,. Here also, just like the ordinary case, in the observable approach by the
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4796 A Shafei Deh Abad

motion of the above system we mean a strongly differentiable one-parameter local group of
automorphisms of the syste#n, satisfying the condition
do, (f)
viem, P wn=1
and in the state approach by the motion of the system with initial values) (we mean a
patht — (x(¢) p(t)) in R? such that for eaclf e M,

d
g @ p@) = {z, f}x(t) p1)) x(0) =x p0) = p.

In this paper following [1, 2] we follow the observable approach, and accept that the
massm of a particle moving on a straight line, like its coordinate and momentum, is an
operator. Therefore, we have the following commutation relations

mx = qxm mp = gpm.

See also [1,2]. We mention that, according to the state approach on a quantum plane, the
massn is a real number. So, the two above-mentioned approaches to classical mechanics on
guantum spaces are not equivalent. As we will see, we can not consider an arbitrary element
of M, as a Hamiltonian. Indeed, to each Hamiltonian element¢nthere corresponds a
unique Hamiltonian derivation and the set of all these derivations is a Virasoro algebra with
central charge zerd. However, as we will see for a general Hamiltonian, in our sense the
corresponding Hamilton equations do not define any motion in general. When we restrict
ourselves to the Hamiltonian system$t(, , z), with z in the subalgebrai(2, A) of V,

and only in this case the Hamilton equations only give the motion of the system and then
one can easily see that the possible motions on the quantum spaces are those coming from
guadratic Hamiltonians. Clearly these motions are of very restricted types. So, we should
look for other quantum manifolds to have motions of other types.

This paper consists of three sections. The structure of the Lie algebra of derivations
of the three-dimensional Manin quantum spak¢, is considered in section 1. In this
section we show that the Lie algebra of derivations./ef, is the semi-direct product
of the Lie algebra of inner derivations of this algebra and the threefold generalized
Virasoro algebra with central charge zero, i.e. a Lie algebra generated by the family
{L"|m =1, 2,3 andi € Z} and the multiplication rule

(L' L) = LYy = iLf.

Section 2 is devoted to Hamiltonian systems.efy,. In this section we define the notion
of a Hamiltonian derivation. We then prove that the set of all such derivations is a Virasoro
algebra with central charge zero. Finally, the Hamiltonian equatiors4ofy },) are solved
in section 3.
Before going any further we remind that in this paperAywe mean theC-algebra of
all absolutely convergent power seri®s; ciq' on ]0, 1] with values inC. Consider

1>—00

the following commutation relations betweenp, m,

xaxb — x4 papb — paer mem

puxb — qabxbpa maxb — qctbxbmct mapb =g

+b b +b

= ma
abpbma
wherea andb are inZ. By M, we mean theA-algebra of@-meromorphic functions of
the form

Z aijr(q)x' p'm"

i,j,k>»>—00
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where the sign: >’ under the =’ means that the indices j, k are bounded below. By
using the above commutation relations one can easily seeMhats closed under the
Cauchy product. Therefore, it is atralgebra. The value of an element M, written in
the above form at a poir s 7) in R3 is

L
> aylgr's't
i,j,k>—00

which is absolutely convergent by definition. The concept oameromorphic function’
is a generalization of the concept of @-analytic function’ given in [4].
The subalgebra oM, consisting of all

z= Z aijk(Q)xipjmk
i,j=0,k>—00
and the subalgebra consisting of all
2= Y cilgm
k>—00

will be denoted byA4 and M, respectively. We also remind that all the above-mentioned
function spaces are endowed with the natural locally convex structures. Finally, throughout
the paper the sign—’ on a ‘X’ means that theX’ has finite support.

1. Derivations of M,
Let D : M, — M, be a derivation. Assume that
D)= Y ap@xpimt D)= Y biplgx pVm*
i,j,k>—00 i,j,k>—00
and
Py = Y el pimt
i,j,k>—00
Then, direct calculation shows that
@ = qYaije = @ = Db (@' = Dby = (¢' — ¢Meipe
@7 = Deijp = XL — ¢ agjx.
Therefore, forg # 0,
k;ﬁO and Clljk#O@k‘f']#O and bljk7£0<:>l+]7éo
and Cijk #* 0. (1)

The derivationD is called type 1 if, fori = —j =k, a;jx = bijx = cijx = 0. The set
of all derivations of type 1 will be denoted 119;.

Let D be a derivation of type 1 and l&(x), D(p) and D(m) be as above. Leaj # 1
and

ktj -1 P ik
7= E ("™ =D aix' p’m”.
ijk>—00
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Clearly z is a well defined element of1, and we have

vl ok
[z,x] = Z aijpx'p’m* = D(x)
i,j,k>—00

[.p)= Y. @™ =D au@ —gx'pmt = Y by’ pmt = D(p)

i,j,k>—00 i,j,k>—00
j -1 SN, 1 i 1
[oml= Y (@ =D aup@—g ' p/mtt = Y cpx’ p/m = Dm).
i,j,k>—00 i,j,k>—00

Therefore, for eachy € M,, D(y) = [z,y]. Since elements ofM, of the form
z=Y a;x'p~'m' are in the centre aM,, each derivation of type 1 is an inner derivation

l
and vice versa
Let D : M, — M, be a derivation. Assume that

D(x) = Z a,-x”rlp*lm" D(p) = Z bix"plf"m"
i>—00 i>—00
D(m) = Z cixip_imiJrl.
i>—00
Then D is called a derivation of type 2. Direct calculation shows that in this case we have

D(x)x = xD(x) gDx)p = pD(x) gD(x)m = mD(x)

gxD(p) = D(p)x D(p)p = pD(p)
gD(p)m = mD(p) gxD(m) = D(m)x
gpD(m) = D(m)p D(m)m = mD(m).

Moreover, as one can see easHyderivation D : M, — M, is of type 2 if and only if it
satisfies one of the above nine relations

The set of all derivations of type 2 will be denoted Py.

Let

A=) a@xpTm' B= ) bigx'ptm’
i>—o00 i>—00

and

C = Z Ci(q)xipfimi+l.

i>—00
Then the linear operators

Dl, Dz, D3 . Mq — Mq

given by
Dl(x“pbmc)z Z xiijpme Dy(p) = Z x4 p' Bp'm¢
itj—a—1 itj=b—1
D3(m) = Z x“pbm'Cm/
i+j=c—-1
and

Di(p) = D1(m) =0 D>(x) = Da(m) =0 D3(x) = D3(p) =0

are derivations of type 2.
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We call D; anx-derivation, D, a p-derivation andD3 anm-derivation. It is clear that
each derivation of type 2D : M, — M,, can be written uniquely as the sum of an
x-derivation D;, a p-derivation D, and anm-derivation D3, and

D1(x) = D(x) Dz(p) = D(p) D3(m) = D(m).

We mention in passing that b : M, — M, is a derivation of type 2, then for each
monomialz = x* p’m*¢ we havezD(z) = D(z)z.

Let
a o9 0
— M- M
ox dp Jom 1 1
be linear operators given by
9 .. L R S
a(xzp]n/lk)=l-xl—1p]n/lk g(x’pjmk)=q_’jx’pf_lmk

and

ai(xipjmk) — qf(i+j)kxipjmkfl.
m

Assume thatD : M, — M, is a derivation. TherD can be written uniquely as
0 0 0
D =Dx)—+ D(p)— + D(m)—.
dx ap om
Because, fou, b andc in N, we have
D(xapme) — an(pb)mc + D(xa)phmc + xaphD(mC)
= bxpPID(p)m® + ax® 1D (x) p"m® + cx p’m "D (m)
=g~ [bD(p)x p* " m¢] + ax’ 1D (x) pPm¢ + g~ e D(m)x pPmet
0 0 0 0 b
= |D(p)— + Dx)— + D(m)— | (x“p"m").
ap dx am
If D: M, — M, is a derivation of type 2, then
0 0 0
D1 = D(x)— Dy = D(p)— D(m)—
ax ap om
are derivations. To prove this, it is sufficient to prove thatx)d/dx, D(p)d/dp and
D(m)d/om are derivations. Let, b, ¢, r, s andz be inN. Then
0 d .
D(x)_(xapbmcxrpsmt) — qr(b+c‘)+SCD(x)_(xa+l pb+smC+t)
0x 0x
— qr(b+c)+50(a 4 r)D(x)anrrflprchrt
d d .
= xp’mD(x)— (x" p*m") + D(x)— (x* p’m)x" p*m".
0x 0x

In the same way we see thBX(p)a/dp and D(m)d/dm are derivations.

The set of all derivations aM,, which is clearly anA-Lie algebra will be denoted by
D.

Now it is clear thatD, with

[D1, Dy] = DDy — D3D;

is an A-Lie algebra Moreover, each derivation of M, can be written uniquely as
D = D; + D,, where D; € D, and D, € D,. Furthermore,D, is an ideal of D.
Therefore,D is the semi-direct product oD; and D.
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Let X' = (¢"2x)', P/ = (q//p)/, M* = (¢"/?m)" and

P Y | d
LI=XP M — L2 =X/P M — and  L3=Xx'PFmF—.
0x J op om
Then clearly we have
[L Lj ] = -]L(z+]) lL(lJrj)

Therefore,D, is a threefold Virasoro algebra with central charge zero

2. Hamiltonian systems on the quantum plane

In this section we endowM,, with the canonical-deformed Poisson structure
120 o9 1pd o9

dx  dp ap  Ix’

The associateg-deformed Poisson bracket will be denoted {py,. More precisely, for
each two elementg, ¢ € M, we have

qfl/zﬂa_g _120f 3¢
dx ap ap ox’

T =

{f’g}q =

An elementz € M, is called Hamiltonian if the mapping
X, My — M,
defined by
X(f) =1z, [l

is a derivation. In this cas¥, is called a Hamiltonian derivation.
Assume that forz € M,, X, is a derivation. SinceX (m) = 0 it is necessarily a

derivation of type 2. LefX, be a derivation. Suppose that

z= Z aijk(‘])xipjmk'

i,j,k>—00
Then
X.(0) == jalq)g Pxp T mt X(p) =) iaij(g)gx pimt
i,j,k i,j.k

and X, (m) = 0. However, sinceX, is a derivation of type 2 as we have seéns k + 1
and j = 1 — k. Conversely, assume that

7 = Z ak(q)xk+l 1-k k

k>—00
Then
A=X.0)=— Y al@g TPkt phmt
k>—00
B=X.p)= ) alg)g ’(L+kx*pFm
k>—o00

andC = X,(m) = 0. HenceX, is a derivation of type 2. Therefore, ¢ M,, X, is
Hamiltonian if and only if it is of the above form.



Hamiltonian systems on quantized spaces 4801

The set of all Hamiltonian elements @, will be denoted byH (M,). It is clear that
H(M,) is an A-module. Letz! = x*+1pl-*mk andz? = x'+1pl~'m!. Direct computation
shows that

{Zl ZZ}q — 2(]( _ l)q_(l/z'H‘l)x1+(k+l)pl_(k+l)mk+l.

Therefore, for each two elementd, z2 in H(M,), {z%, 7%}, € H(M,). Moreover,
{z, 22}, = —{z2 7%},. Now letz! andz? be as above angf = x"*1pl="m". Then

({4 22, B + 1A B, Y, B Y, 2B = 0.

Therefore(H (M,){, },) is an A-Lie algebra, with centré/. Let 7! andz? be as above.
Then

X{zl,f}q (x) = 2(k — I)(1 — k — l)q—(l+k+l+kl)xl+(k+l)p1—(k+l)mk+l = [X.1 X.2](x)
Xt 22y, (p) = 20k — (L4 k + g~ FHOMH p=E D+l — [ X4 X 2] (p)
and
Xz z2),(m) = 0.
From the above considerations we see that the mapping
X:HWM,) — D
given by X (z) = X, is a homomorphism ofi-Lie algebras with kerneM.
Let z, € H(M,) be defined as follows
Zn = 1/2q(1_”2)/2x1+”p1_”m” necZz.

Then {z,,, z,} = (m — n)z,,+,. Therefore,the Lie algebra of Hamiltonian derivations of
M, is the Virasoro algebra with central charge zer@his algebra will be denoted by.
Let z be in H(M,). Then for eachf in M, we have

0 0
{Zv f}q = {Z’x}qé + {Zv l)}t]_‘lf7
because
d d 0 0
{z, flg = X.(f) = XAX)% + Xz(p)é = {z, x}qé + {z, p}qé-

By a Hamiltonian system on the quantum plane we mean a triplg, @z, z), where
7 is the canonicaly-deformed Poisson structure olt, andz € H(M,). Let ¢; be
a strongly differentiable one-parameter local group of automorphisms of-theformed
Poisson structureM!,, w). We say thatp, defines the motion of the system\,, r, z), if
for eachf € M,

d,
Vet tle =1

where for eachf € M, ¢;(f) is denoted byf;.

Proposition. A necessary and sufficient condition fgr to define the motion of the
Hamiltonian systemM,, 7, z) is that, for each, z;, € H(M,) andx,, p, andm, satisfy
the following equations:

dx; dp; dm,
E = {met}q E = {z, pt}q W = {z, m,}q.
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Proof. The condition is clearly necessary. To prove that the condition is sufficient, assume
thatx,, p, andm, satisfy the above equations agde H(M,). Then

x—'—x{z X} %— {z } m%—m{z my;}
tdt—tt’tq ptdt—Pt t» Ptiq zdt—tt,zq-
As we have seen earlier, for eachX,, is a derivation. Therefore,
dx,
Xf{Zz,X;}q = xth, (x) = Xz, (xp)x; = Exz
dp
pilze g = piXe (p) = Xo (p)pe = 5=
dm,
mi{z;, mt}q =m X, (m;) = X, (m))m; = ?mr
Now let f = x' p/m*. Then f, = xlp,m and
df - dx; 1dp; j _qdm;
=g i inl E’" + %1k 1?
_%zljk _—l jlk gD k-1
—d(zx )+ ——(q" jxipi )+ dt( kx plmi ™)
_ f f f _ _
=X, (Xz) + X, (p)—+ X, (mz) =X, () ={z. filg-

op:

Therefore, for eacly € /\/lq we have d;/dr = {z, fz}q.

Now since, for each, {z, z}, = 0, therefore d,/dr = 0. This means that is an
invariant of motion. It is easy to see that any analytic function & also an invariant of
motion. O

Note that the Hamilton equations oW, in general, does not define a motion of the
corresponding Hamiltonian system.

3. Hamiltonian systems on.A4,

Clearly the subalgebra af generated by
20 = 1/2¢Y?xp 71 = 1/2x%m 2.1 =1/2p?m™t
is s1(2, A). Now consider the Hamiltonian system, , z), wherez = az_1+ Bz1+ v zo,
anda, 8 andy € A. The corresponding Hamilton equations are
dv,
dr
or in matrix form
dy, dp ) ( —q Y%y ql/zﬂiﬂ)
—_— —_— = (X _ _ .
( i (x: pr) —qV2am1 g2y,
By solving this linear differential equation with constant coefficients we obtain

dp

& g Y2(Bxim + ypy)

g Y apm™ +q tyx)

-1/2 1/2

x; = coshPtx — O~ Lsinhot (g Y2y x + ¢Y%apm™)
p; = coshrp + 071 sinhbr (g Y?Bxm + g Y?yp)
whered = (¢~ Y?y? — ap)Y/?, x = xg and p = po.

Now let g be a constant complex number and4&f denotes the non-principal branch
of the second root of. Then we have the following.
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(1) Letae =1 andB = y = 0. In this case we have

Xp =X — ql/zpm_1 pr = p.

(2) Leta = 1, B = w? andy = 0. In this case we have
x; = x coswt — ¢~ Y2 p(wm) ™ sinwt
pr = pcoswt + g Y2wxm sinwr.

Note that in these two special cases the slight difference between our results and those in
[1] comes from the difference between the definitions ofgkaeformed Poisson structures
given in [1], and also the difference between Hamiltonians comes from different rules of
differentiation.
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