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Abstract. In this paper we first characterize the Lie algebra of derivations of the three-
dimensional Manin quantum space as the semi-direct product of the Lie algebra of its inner
derivations and the threefold generalized Virasoro algebra with central charge zero. Then we
consider Hamiltonian systems on the quantum plane and we prove that the set of Hamiltonian
derivations is a Virasoro algebra with central charge zero. Moreover, we show that the only
possible motions on the quantum plane come from quadratic Hamiltonians and we find the
solutions of the corresponding Hamilton equations explicitly.

0. Introduction

Classical and quantum mechanics onq-deformed spaces have been studied by some authors.
Most of these works are concerned with Hamiltonian systems [1–3], but there are also some
works concerning the Lagrangian formalism on the quantum plane [2, 3]. To construct the
classical mechanics on the quantum plane one can use theq-deformed symplectic structure
obtained by theq-deformation of the natural symplectic structure of the plane and obtain the
equations of motion in the form dx/dt = {H, x}q , dp/dt = {H,p}q [1, 2]. Unfortunately,
the q-deformed Poisson bracket has nothing in common with the usual Poisson bracket,
unless it is bilinear, and its only use is in writing the equations of motion as above.
However, most of the very interesting facts of classical mechanics are absent here. It
is unfortunate that, in general, it is not true that{H,H }q = 0, and{H, f }q = 0 does not
imply {H 2, f }q = 0.

It is well known that there are two approaches to classical mechanics based on the
symplectic structure of the phase space [4, 5]. The first is the state approach and the second
is the observable approach. In these approaches the coordinate and the momentum functions
appear like other observables and they all satisfy the same equation. A new interpretation
of the quantum spaces is given in [6]. According to this interpretation the two approaches
to classical mechanics are also suitable for the case of quantum spaces. To be more precise,
letMq—for the notation and conventions see the following pages—denote theA-algebra
of Q-meromorphic functions and letπ be the canonicalq-deformed Poisson structure on
Mq . By a Hamiltonian system we mean a triple (Mq, π, z), wherez is a π -Hamiltonian
element ofMq . Here also, just like the ordinary case, in the observable approach by the
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motion of the above system we mean a strongly differentiable one-parameter local group of
automorphisms of the systemφt , satisfying the condition

∀f ∈Mq

dφt(f )

dt
= {z, φt (f )} φ0(f ) = f

and in the state approach by the motion of the system with initial values (x, p) we mean a
path t → (x(t) p(t)) in R2 such that for eachf ∈Mq

d

dt
f (x(t) p(t)) = {z, f }(x(t) p(t)) x(0) = x p(0) = p.

In this paper following [1, 2] we follow the observable approach, and accept that the
massm of a particle moving on a straight line, like its coordinate and momentum, is an
operator. Therefore, we have the following commutation relations

mx = qxm mp = qpm.
See also [1, 2]. We mention that, according to the state approach on a quantum plane, the
massm is a real number. So, the two above-mentioned approaches to classical mechanics on
quantum spaces are not equivalent. As we will see, we can not consider an arbitrary element
of Mq as a Hamiltonian. Indeed, to each Hamiltonian element onMq there corresponds a
unique Hamiltonian derivation and the set of all these derivations is a Virasoro algebra with
central charge zeroV. However, as we will see for a general Hamiltonian, in our sense the
corresponding Hamilton equations do not define any motion in general. When we restrict
ourselves to the Hamiltonian systems (Mq, π, z), with z in the subalgebrasl(2, A) of V,
and only in this case the Hamilton equations only give the motion of the system and then
one can easily see that the possible motions on the quantum spaces are those coming from
quadratic Hamiltonians. Clearly these motions are of very restricted types. So, we should
look for other quantum manifolds to have motions of other types.

This paper consists of three sections. The structure of the Lie algebra of derivations
of the three-dimensional Manin quantum spaceMq is considered in section 1. In this
section we show that the Lie algebra of derivations ofMq is the semi-direct product
of the Lie algebra of inner derivations of this algebra and the threefold generalized
Virasoro algebra with central charge zero, i.e. a Lie algebra generated by the family
{Lmi |m = 1, 2, 3 andi ∈ Z} and the multiplication rule

[Lmi , L
n
j ] = jLni+j − iLmi+j .

Section 2 is devoted to Hamiltonian systems onMq . In this section we define the notion
of a Hamiltonian derivation. We then prove that the set of all such derivations is a Virasoro
algebra with central charge zero. Finally, the Hamiltonian equations on(A {, }q) are solved
in section 3.

Before going any further we remind that in this paper byA we mean theC-algebra of
all absolutely convergent power series

∑
i>−∞ ciq

i on ]0, 1] with values inC. Consider
the following commutation relations betweenx, p,m,

xaxb = xa+b papb = pa+b mamb = ma+b
paxb = qabxbpa maxb = qabxbma mapb = qabpbma

wherea andb are inZ. By Mq we mean theA-algebra ofQ-meromorphic functions of
the form ∑

i,j,k�−∞
aijk(q)x

ipjmk
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where the sign ‘�’ under the ‘6’ means that the indicesi, j, k are bounded below. By
using the above commutation relations one can easily see thatMq is closed under the
Cauchy product. Therefore, it is anA-algebra. The value of an elementz ∈Mq written in
the above form at a point(r s t) in R3 is∑

i,j,k�−∞
aijk(q)r

isj tk

which is absolutely convergent by definition. The concept of a ‘Q-meromorphic function’
is a generalization of the concept of a ‘Q-analytic function’ given in [4].

The subalgebra ofMq consisting of all

z =
∑

i,j>0,k�−∞
aijk(q)x

ipjmk

and the subalgebra consisting of all

z =
∑
k�−∞

ci(q)m
k

will be denoted byA andM, respectively. We also remind that all the above-mentioned
function spaces are endowed with the natural locally convex structures. Finally, throughout
the paper the sign ‘−’ on a ‘6’ means that the ‘6’ has finite support.

1. Derivations ofMq

Let D :Mq →Mq be a derivation. Assume that

D(x) =
∑

i,j,k�−∞
aijk(q)x

i+1pjmk D(p) =
∑

i,j,k�−∞
bijk(q)x

ip(j+1)mk

and

D(m) =
∑

i,j,k�−∞
cijk(q)x

ipjmk+1.

Then, direct calculation shows that

(qk − qi)aijk = (qk+j − 1)bijk (qi+j − 1)bijk = (qi − qk)cijk
(qj+k − 1)cijk = (1− qi+j )aijk.

Therefore, forq 6= 0,

k 6= 0 and aijk 6= 0⇔ k + j 6= 0 and bijk 6= 0⇔ i + j 6= 0

and cijk 6= 0. (1)

The derivationD is called type 1 if, fori = −j = k, aijk = bijk = cijk = 0. The set
of all derivations of type 1 will be denoted byD1.

Let D be a derivation of type 1 and letD(x), D(p) andD(m) be as above. Letq 6= 1
and

z =
∑

ijk�−∞
(qk+j − 1)−1aijkx

ipjmk.
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Clearly z is a well defined element ofMq and we have

[z, x] =
∑

i,j,k�−∞
aijkx

i+1pjmk = D(x)

[z, p] =
∑

i,j,k�−∞
(qj+k − 1)−1aijk(q

k − qi)xipj+1mk =
∑

i,j,k�−∞
bijkx

ipj+1mk = D(p)

[z,m] =
∑

i,j,k�−∞
(qk+j − 1)−1aijk(1− qi+j )xipjmk+1 =

∑
i,j,k�−∞

cijkx
ipjmk+1 = D(m).

Therefore, for eachy ∈ Mq , D(y) = [z, y]. Since elements ofMq of the form
z =∑

i

aix
ip−imi are in the centre ofMq , each derivation of type 1 is an inner derivation

and vice versa.
Let D :Mq →Mq be a derivation. Assume that

D(x) =
∑
i�−∞

aix
i+1p−1mi D(p) =

∑
i�−∞

bix
ip1−imi

D(m) =
∑
i�−∞

cix
ip−imi+1.

ThenD is called a derivation of type 2. Direct calculation shows that in this case we have

D(x)x = xD(x) qD(x)p = pD(x) qD(x)m = mD(x)
qxD(p) = D(p)x D(p)p = pD(p)
qD(p)m = mD(p) qxD(m) = D(m)x
qpD(m) = D(m)p D(m)m = mD(m).

Moreover, as one can see easily,a derivationD :Mq →Mq is of type 2 if and only if it
satisfies one of the above nine relations.

The set of all derivations of type 2 will be denoted byD2.
Let

A =
∑
i�−∞

ai(q)x
i+1p−imi B =

∑
i�−∞

bi(q)x
ip1−imi

and

C =
∑
i�−∞

ci(q)x
ip−imi+1.

Then the linear operators

D1,D2,D3 :Mq →Mq

given by

D1(x
apbmc) =

∑
i+j=a−1

xiAxjpbmc D2(p) =
∑

i+j=b−1

xapiBpjmc

D3(m) =
∑

i+j=c−1

xapbmiCmj

and

D1(p) = D1(m) = 0 D2(x) = D2(m) = 0 D3(x) = D3(p) = 0

are derivations of type 2.
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We callD1 an x-derivation,D2 a p-derivation andD3 anm-derivation. It is clear that
each derivation of type 2,D : Mq → Mq , can be written uniquely as the sum of an
x-derivationD1, a p-derivationD2 and anm-derivationD3, and

D1(x) = D(x) D2(p) = D(p) D3(m) = D(m).
We mention in passing that ifD :Mq →Mq is a derivation of type 2, then for each

monomialz = xapbmc we havezD(z) = D(z)z.
Let

∂

∂x
,
∂

∂p
,
∂

∂m
:Mq →Mq

be linear operators given by

∂

∂x
(xipjmk) = ixi−1pjmk

∂

∂p
(xipjmk) = q−ijxipj−1mk

and
∂

∂m
(xipjmk) = q−(i+j)kxipjmk−1.

Assume thatD :Mq →Mq is a derivation. ThenD can be written uniquely as

D = D(x) ∂
∂x
+D(p) ∂

∂p
+D(m) ∂

∂m
.

Because, fora, b andc in N, we have

D(xapbmc) = xaD(pb)mc +D(xa)pbmc + xapbD(mc)
= bxapb−1D(p)mc + axa−1D(x)pbmc + cxapbmc−1D(m)

= q−a[bD(p)xapb−1mc] + axb−1D(x)pbmc + q−(i+j)cD(m)xapbmc−1

=
[
D(p)

∂

∂p
+D(x) ∂

∂x
+D(m) ∂

∂m

]
(xapbmc).

If D :Mq →Mq is a derivation of type 2, then

D1 = D(x) ∂
∂x

D2 = D(p) ∂
∂p

D(m)
∂

∂m

are derivations. To prove this, it is sufficient to prove thatD(x)∂/∂x, D(p)∂/∂p and
D(m)∂/∂m are derivations. Leta, b, c, r, s and t be inN. Then

D(x)
∂

∂x
(xapbmcxrpsmt) = qr(b+c)+scD(x) ∂

∂x
(xa+rpb+smc+t )

= qr(b+c)+sc(a + r)D(x)xa+r−1pb+smc+t

= xapbmcD(x) ∂
∂x
(xrpsmt)+D(x) ∂

∂x
(xapbmc)xrpsmt .

In the same way we see thatD(p)∂/∂p andD(m)∂/∂m are derivations.
The set of all derivations ofMq which is clearly anA-Lie algebra will be denoted by

D.
Now it is clear thatD2 with

[D1,D2] = D1D2−D2D1

is an A-Lie algebra. Moreover, each derivation ofMq can be written uniquely as
D = D1 + D2, where D1 ∈ D1 and D2 ∈ D2. Furthermore,D2 is an ideal of D.
Therefore,D is the semi-direct product ofD1 and D2.
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Let Xi = (qi/2x)i , P j = (qj/2p)j , Mk = (qk/2m)k and

L1
i = XiP−iMi ∂

∂x
L2
−j = XjP−jMj ∂

∂p
and L3

k = XkP−kMk ∂

∂m
.

Then clearly we have

[Lli, L
n
j ] = jLn(i+j) − iLl(i+j).

Therefore,D2 is a threefold Virasoro algebra with central charge zero.

2. Hamiltonian systems on the quantum plane

In this section we endowMq with the canonicalq-deformed Poisson structure

π = q−1/2 ∂

∂x
⊗ ∂

∂p
− q1/2 ∂

∂p
⊗ ∂

∂x
.

The associatedq-deformed Poisson bracket will be denoted by{, }q . More precisely, for
each two elementsf, g ∈Mq we have

{f, g}q = q−1/2∂f

∂x

∂g

∂p
− q1/2∂f

∂p

∂g

∂x
.

An elementz ∈Mq is called Hamiltonian if the mapping

Xz :Mq →Mq

defined by

Xz(f ) = {z, f }q
is a derivation. In this caseXz is called a Hamiltonian derivation.

Assume that forz ∈ Mq , Xz is a derivation. SinceXz(m) = 0 it is necessarily a
derivation of type 2. LetXz be a derivation. Suppose that

z =
∑

i,j,k�−∞
aijk(q)x

ipjmk.

Then

Xz(x) = −
∑
i,j,k

jaijk(q)q
−i+1/2xipj−1mk Xz(p) =

∑
i,j,k

iaijk(q)q
−1/2xi−1pjmk

andXz(m) = 0. However, sinceXz is a derivation of type 2 as we have seen,i = k + 1
andj = 1− k. Conversely, assume that

z =
∑
k�−∞

ak(q)x
k+1p1−kmk.

Then

A = Xz(x) = −
∑
k�−∞

ak(q)q
−(1+2k)/2(1− k)x1+kp−kmk

B = Xz(p) =
∑
k�−∞

ak(q)q
−1/2(1+ k)xkp1−kmk

andC = Xz(m) = 0. HenceXz is a derivation of type 2. Therefore,z ∈ Mq , Xz is
Hamiltonian if and only if it is of the above form.
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The set of all Hamiltonian elements ofMq will be denoted byH(Mq). It is clear that
H(Mq) is anA-module. Letz1 = xk+1p1−kmk andz2 = xl+1p1−lml . Direct computation
shows that

{z1, z2}q = 2(k − l)q−(1/2+kl)x1+(k+l)p1−(k+l)mk+l .

Therefore, for each two elementsz1, z2 in H(Mq), {z1, z2}q ∈ H(Mq). Moreover,
{z1, z2}q = −{z2, z1}q . Now let z1 andz2 be as above andz3 = xn+1p1−nmn. Then

{{z1, z2}q, z3}q + {{z2, z3}q, z1}q + {{z3, z1}q, z2}q = 0.

Therefore(H(Mq){, }q) is anA-Lie algebra, with centreM. Let z1 and z2 be as above.
Then

X{z1,z2}q (x) = 2(k − l)(1− k − l)q−(1+k+l+kl)x1+(k+l)p1−(k+l)mk+l = [Xz1 Xz2](x)

X{z1 ,z2}q (p) = 2(k − l)(1+ k + l)q−(1+kl)xk+lp1−(k+l)mk+l = [Xz1 Xz2](p)

and

X{z1 ,z2}q (m) = 0.

From the above considerations we see that the mapping

X : H(Mq)→ D
given byX(z) = Xz is a homomorphism ofA-Lie algebras with kernelM.

Let zn ∈ H(Mq) be defined as follows

zn = 1/2q(1−n
2)/2x1+np1−nmn n ∈ Z.

Then {zm, zn} = (m − n)zm+n. Therefore,the Lie algebra of Hamiltonian derivations of
Mq is the Virasoro algebra with central charge zero. This algebra will be denoted byV.

Let z be inH(Mq). Then for eachf in Mq we have

{z, f }q = {z, x}q ∂f
∂x
+ {z, p}q ∂f

∂p

because

{z, f }q = Xz(f ) = Xz(x)∂f
∂x
+Xz(p)∂f

∂p
= {z, x}q ∂f

∂x
+ {z, p}q ∂f

∂p
.

By a Hamiltonian system on the quantum plane we mean a triple (Mq, π, z), where
π is the canonicalq-deformed Poisson structure onMq and z ∈ H(Mq). Let φt be
a strongly differentiable one-parameter local group of automorphisms of theq-deformed
Poisson structure (Mq, π ). We say thatφt defines the motion of the system (Mq, π, z), if
for eachf ∈Mq

dft
dt
= {zt , ft }q f0 = f

where for eachf ∈Mq , φt(f ) is denoted byft .

Proposition. A necessary and sufficient condition forφt to define the motion of the
Hamiltonian system(Mq, π, z) is that, for eacht , zt ∈ H(Mq) andxt , pt andmt satisfy
the following equations:

dxt
dt
= {zt , xt }q dpt

dt
= {zt , pt }q dmt

dt
= {zt , mt }q .
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Proof. The condition is clearly necessary. To prove that the condition is sufficient, assume
that xt , pt andmt satisfy the above equations andzt ∈ H(Mq). Then

xt
dxt
dt
= xt {zt , xt }q pt

dpt
dt
= pt {zt , pt }q mt

dmt
dt
= mt {zt , mt }q .

As we have seen earlier, for eacht , Xzt is a derivation. Therefore,

xt {zt , xt }q = xtXzt (xt ) = Xzt (xt )xt =
dxt
dt
xt

pt {zt , pt }q = ptXzt (pt ) = Xzt (pt )pt =
dpt
dt
pt

mt {zt , mt }q = mtXzt (mt ) = Xzt (mt)mt =
dmt
dt
mt .

Now let f = xipjmk. Thenft = xit pjt mkt and

dft
dt
= ixi−1

t

dxt
dt
p
j
t m

k
t + xit jpj−1

t

dpt
dt
mkt + xit pjt kmk−1

t

dmt
dt

= dxt
dt
(ixi−1

t p
j
t m

k)+ dpt
dt
(q−ijxit p

j−1
t mk)+ dmt

dt
(q−(i+j)kxit p

j
t m

k−1
t )

= Xzt (xt )
∂ft

∂xt
+Xzt (pt )

∂ft

∂pt
+Xzt (mt)

∂ft

∂xt
= Xzt (ft ) = {zt , ft }q .

Therefore, for eachf ∈Mq we have dft/dt = {zt , ft }q .
Now since, for eacht , {zt , zt }q = 0, therefore dzt/dt = 0. This means thatz is an

invariant of motion. It is easy to see that any analytic function ofz is also an invariant of
motion. �

Note that the Hamilton equations onMq , in general, does not define a motion of the
corresponding Hamiltonian system.

3. Hamiltonian systems onAq

Clearly the subalgebra ofV generated by

z0 = 1/2q1/2xp z1 = 1/2x2m z−1 = 1/2p2m−1

is sl(2, A). Now consider the Hamiltonian system (Aq, π, z), wherez = αz−1+βz1+γ z0,
andα, β andγ ∈ A. The corresponding Hamilton equations are

dxt
dt
= −q−1/2(αptm

−1+ q−1γ xt )
dpt
dt
= q−1/2(βxtm+ γpt )

or in matrix form( dxt
dt

dpt
dt

)
= (xt pt )

( −q−1/2γ q−1/2βm

−q1/2αm−1 q−1/2γ

)
.

By solving this linear differential equation with constant coefficients we obtain

xt = coshθtx − θ−1 sinhθt (q−1/2γ x + q1/2αpm−1)

pt = coshθtp + θ−1 sinhθt (q−1/2βxm+ q−1/2γp)

whereθ = (q−1/2γ 2− αβ)1/2, x = x0 andp = p0.
Now let q be a constant complex number and letz1/2 denotes the non-principal branch

of the second root ofz. Then we have the following.
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(1) Let α = 1 andβ = γ = 0. In this case we have

xt = x − q1/2pm−1 pt = p.
(2) Let α = 1, β = ω2 andγ = 0. In this case we have

xt = x cosωt − q−1/2p(ωm)−1 sinωt

pt = p cosωt + q−1/2ωxm sinωt.

Note that in these two special cases the slight difference between our results and those in
[1] comes from the difference between the definitions of theq-deformed Poisson structures
given in [1], and also the difference between Hamiltonians comes from different rules of
differentiation.
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